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INTRODUCTION 

The industrial sector is undergoing a shift 
from Industry 4.0 to Industry 5.0 [1], integrating 
the principles of both. One of the ongoing chal-
lenges is the need for flexibility and productivity, 
especially with the increasing demand for custom-
ized products. Industrial robots have played a cru-
cial role in meeting these requirements, especially 
during the COVID-19 pandemic [2, 3]. However, 
companies also need the flexibility of manual sys-
tems to offer a variety of products, particularly in 
the assembly phase [4, 5], which is the final stage 
where all product variants are present.

Manual assembly systems offer flexibility, 
but they also have downsides, such as low accu-
racy and difficulty in maintaining repeatability. 
These systems also pose ergonomic problems and 
increase the risk of occupational injuries, which 

could affect competitiveness and worker well-be-
ing. Industry 5.0 aims to create a human-centered 
workplace where the operator’s welfare is maxi-
mized, which conflicts with the introduction of 
occupational hazards [6, 7].

To address these challenges, collaborative ro-
bots (cobots) have gained popularity [8-10]. Co-
bots combine the productivity of automatic sys-
tems with the flexibility of manual ones and work 
directly with operators without requiring fences. 
They can perform burdensome and exhausting 
tasks, improving not only ergonomics but also 
cognitive workload. Moreover, cobots can work 
alongside human operators in the same space and 
time, eliminating the need for additional safety 
measures typical of industrial robots [11, 12].

One of the challenges in the application of the 
collaborative is its accuracy of positioning using 
the user frame as a reference system is determined 
by both the robot’s repeatability and the accuracy of 
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the user frame calibration with respect to the robot’s 
fixed reference system [13]. As a result, the use of 
different calibration methods may result in varying 
levels of positioning accuracy, even with the same 
movement repeatability of the cobots. Typically, 
there are two methods adopted to perform a cali-
bration procedure: 1) mechanical methods and 2) 
vision-based methods [14]. While the mechanical 
methods have been used for the decades, the vision-
based systems are relatively new and they have the 
advantage that the selection method is based on 
taken images of the element [15]. 

Vision-based calibration methods have 
gained interest in the scientific community work-
ing on cobots due to their speed, despite being 
less accurate than mechanical methods. These 
methods rely on computer vision algorithms to 
extract useful information from images. In recent 
years, a variety of innovative procedures have 
been developed that adopt these algorithms. For 
instance, a calibration procedure using a custom 
L-shaped 3D printed tool with three holes has 
been described by Marques de Araujo et al. [16]. 
The tool is carefully placed on the workpiece to 
calibrate with respect to a CNC machine tool, and 
the holes are accurately detected by a Circular 
Hough Transform algorithm applied to the RGB 
image of the calibration tool acquired by the ste-
reo vision system mounted on the machine arm. 
Other automatic calibration methods based on the 
camera calibration algorithm are presented by Du 
et al. [17], where the user frame is estimated by 
analyzing the chessboard pattern to extract the 
camera coordinate system and parameters. 

Nevertheless, the vision systems face some 
problems, which can have external or internal ori-
gin [18, 19]. They can be as following: quality of 
lighting, quality of image, quality of calibration and 
the position (height or angle) of taking the image. 
In the reference of Golnabi et al. [20], the deeper 
insight of factors influencing the vision system re-
liability is described. In this paper, we focus on the 
accuracy of the vision system embedded into the 
end-effector of the collaborative robot YuMi IRB 
14000 by variable light of intensity. The effect of 
the experiment is finding the range of the lighting 
intensity by which the least number of failures of 
vision system have occurred. Moreover, the sys-
tem is validated by the variable angle of incidence 
and the same value of lighting intensity. The aim 
of validation is to cross-check if the angle of inci-
dence have the impact on the stability of the vision 
system and in fact the number of failures.

The remainder of the paper is following.  
In Section 2, the experimental test rig consisting of 
collaborative robot, conveyor belt, PLC controller, 
elements with QR codes and luxmeter is described. 
Next, in Section 3, the experiment is described fo-
cusing on calibration and experimental element. In 
Section 4, the results obtained are discussed and 
the validation of the vision system is conducted. In 
the end, conclusions summarize the paper. 

Experimental test rig

The experimental test rig used for the analysis 
consists of a few crucial devices to provide suffi-
cient conditions for conducting the experimental 
series. First of all, the main device is the dual-arm 
collaborative robot ABB IRB 14000 YuMi (Fig-
ure 1), which arms are equipped with the Cog-
nex vision system. Additionally, to prepare the 
full layout for the pick&place operation, the other 
devices and elements have been used, which are 
specified in Table 1 and are presented in Figure 2.

In Figure 2, the simplified scheme of the ex-
perimental test rig is shown. In order to conduct 
the sequence, the mutual communication between 
devices was needed. Starting with the applied 
PLC controller (1), it was the heart of the whole 
test rig, that its inputs and outputs received and 
sent and received signals from the conveyor belt 
(5) and the vision system (3). After taking the im-
age with vision system, the recognised elements 
used in the experiment with the attached QR code 
on their top (4) were taken by the vacuum system 
in the gripper (3) and placed at the starting point 
of the conveyor belt. The vacuum system was 
connected to the oil compressor (8) to provide 
the suction chamber in the gripper. Next, after the 
recognition, that the element is on the conveyor 
it was transferred to the next sensor (6) and then 
collected with the second arm and placed on the 
place plate (7). For the need of the experiment, 
the experimental elements with QR codes and 
pick and place plates were printed with the FDM 
(Fused Deposition Modelling) method (Figure 3). 
The mass of the element was equal to 7[g], that it 
didn’t have the influence on the dynamics of each 
robot’s arm. 

Before using the vision system, its camera 
was prepared for operation with the grid calibra-
tion method with the grid spacing equal to 5 mm. 
The vision system integrated in YuMi robot al-
lows for various type of element recognition ex-
emplary by its shape (square, round), colour, size 
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Fig. 1. Collaborative robot YuMi IRB 14000 used in the experiment. In Figure, the most important elements are 
marked, i.e. 1 – collaborative robot ABB IRB 14000 YuMi, 2 – vision system in the robot arm, 3 – place plate with 
elements, 4 – conveyor belt, 5 – pick plate, 6 – PLC controller

Table 1. Devices and softwares used in the experimental test rig for the pick&place operation
Device Type

PLC Controller Siemens Simatic S7-1200 (1)

Robot ABB YuMi IRB 14000 (2)

Vision system Cognex In-Sight® 7000 (3)

Conveyor belt Encon Köster (5)

Oil compressor Airpress L6-45 Silent (8)

Photoelectric sensor Omron E3TFT142M (6)

Light meter Voltrcraft MS-1300 (range for light intensity 200-50000 lux)

Robot offline-programming software RobotStudio ABB 2022.3.2

Note: numbers in the ‘Type’ column refer to the numbers assigned to elements in Figure 2.

Fig. 2. Collaborative robot YuMi IRB 14000 used in the experiment
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or QR code as it was in the experiment [21, 22]. 
The advantage of using QR codes for the element 
recognition is its universality and the fact that it is 
commonly used in industrial applications [23, 24].  
QR code is scalable, easy to scan, reproducible 
and can store quite good enough amount of infor-
mation (e.g. code for the specific automotive part) 
[25, 26]. The alternative approach in the recogni-
tion of the specific state can be the application of 

the neural networks, which is based on the con-
sidered state. Referring to the study of Wang et al. 
[27], he proposes the automatic image recogni-
tion by its 5 state starting with state “too dark” to 
“too bright”. Moreover, the QR code recognition 
is based on artificial intelligence methods as it is 
described in the following reference [28], this is a 
quite good alternative to improve the pick&place 
or assembly process. 

EXPERIMENTAL PROCEDURE

As one of the factors influencing the accuracy 
of the vision system is the value of light intensity, 
the decision was made to investigate it. Namely, 
the accuracy of the vision system by the differ-
ent values of light intensity was tested. For the 
analysis, 9 different values of light intensity were 
chosen in the range of 30 to 700 lux, which values 
are specified in Table 2. The light intensity was 
measured at the pick place, from where the ele-
ments were collected by one of the robot’s arms. 
The light in the mentioned place was controlled 
by dimming with roller blinds and brightening by 
adding an additional source of light. Following 

Fig. 3. 3D printed elements with QR 
codes used in the experiment

Fig. 4. Screens from RobotStudio software connected with Integrated Vision 
in SmartGripper by (a) underexposure, (b) overexposure

a)

b)
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the manual of Integrated Vision, in order to ob-
tain good lighting in the element identification 
some rules should be followed such as avoiding 
light distribution, reflections, shadows and glare 
[29]. Achieving optimal results in image pro-
cessing and ensuring excellent performance and 
reliability requires adapting lighting techniques 
to specific scenarios and areas. While no single 
universal lighting technique exists, a solid under-
standing of the fundamental principles of image 
processing enables effective adjustments of light-
ing conditions to capture high-quality input data. 
Implementing such adjustments can significantly 
enhance performance and robustness in various 
applications. After setting the desired light inten-
sity level, the experimental setup was launched 
from RobotStudio software, where the program’s 
listing was initiated. The display from the vision 
system camera was visible in the same software 
(Figure 4). In mentioned Figure 4, two exemplary 
screens in RobotStudio are presented that the ele-
ment is a) underexposed (low level of light in-
tensity) and b) overexposed (high level of light 
intensity). Additionally, in the same Figure two 
cases are presented when the vision system rec-
ognized the element a) green frame around the 
taken image, and when the vision system failed 
b) red frame around the taken image. For each 
considered level of light intensity, there were 100 
hundred attempts taken. Firstly, the vision sys-
tem took a photo of pick plate and recognized the 
number of elements with QR code (usually 4), 
and later after the recognition the element could 
be picked up. The attempt was taken as passed 
when the object was recognized and transferred 
from the picking plate on the conveyor. The failed 
attempt instead, was in the case when the element 
wasn’t recognized and the whole system stopped, 
requiring the manual restart of the setup. The re-
sults obtained are presented and interpreted in the 
next Section.

RESULTS 

As it was described in the previous Section, 
the 9 values of the light intensity were chosen to 
cross-check the accuracy of the vision system. 
Moreover, the idea is to find the range of the light 
intensity when the whole setup works smoothly 
without any interruptions. In Table 2, the values 
of considered light intensity are presented with 
the results of the number of failures by each of 

them. As can be observed, the highest number of 
failed attempts is observed for the smallest con-
sidered value of light intensity by 30[lux], when 
the element is underexposed. Certainly, the result 
obtained is related to the small value of light in-
tensity, which is why not in any case the vision 
system can recognize the QR code despite the fact 
of using embedded flash. A similar situation, but 
with a smaller number of failed attempts occurs 
with the light intensity equal to 40 and 60[lux]. 
The situation is getting better by the light inten-
sity equal to 70[lux], by which there are 14 failed 
attempts. This value can be treated as a step val-
ue for the latter validation of the vision system 
setup. In the range of light intensity between 100 
and 600[lux], failed attempts occur occasionally, 
and this range of light intensity can be taken as a 
reference to the optimal range for the system’s op-
eration. The tendency of the number of failures is 
increasing with the level of light intensity, and 18 
failed attempts occurred by 700[lux]. Based on the 
results obtained it is recommended to find the op-
timal range of light intensity level. In Figure 4, the 
results of failed attempts are presented in the do-
main of light intensity, and actually, 3 areas can be 
characterized that are marked in the same Figure:
I. underexposure area characterizing low level 

of light intensity (Figure 5 – red zone),
II. area for optimal operation of the vision system 

(Figure 5 – green zone),
III. overexposure area characterizing high level of 

light intensity (Figure 5 – yellow zone).

In order to define potential area of opti-
mal light intensity the cubic function (Figure 5 
– green line) was plotted to find the minima of 
fitting it to the results points. The minima of the 
cubic function is close to the light intensity equal 

Table 2. Details for conducted experiement by 
different values of light intensity

Light intensity 
[lux]

Number of tests 
[–]

Number of failures 
[–]

30

100

79

40 52

60 34

70 14

100 0

200 3

400 5

600 7

700 18
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to 250[lux], while the other points in the found 
green area shouldn’t be rejected and the system 
should operate smoothly without serious inter-
ruptions. In Table 3, the function for obtained cu-
bic fitting is presented. 

VALIDATION

After finding the dependence of level of light 
intensity on the robustness of the vision system, 
the another factor is taken into account. System 
is cross-checked if the angle of incidence has an 
influence on the vision system’s operation by the 
constant value of light intensity, which for the 
case is chosen as 70[lux]. For the analysis of im-
pact of angle of incidence on the vision system’s 
accuracy, 4 different angle were chosen that are 
specified in Table 4. For the change of angle of 
incidence, the additional source of light was ap-
plied, that was set in the specific position. In Fig-
ure 6, two exemplary positions of the lamp are 
presented with angles of incidence equal to a) 0° 
and b) 30° while the light intensity in the pick-
ing place was kept constant equal to 70[lux] for 
all considered angles. Similarly to the previous 
experiment, for each angle of incidence, 100 at-
tempts were taken and the number of failed at-
tempts was counted. 

The results of conducted experiment are col-
lected in Table 4, and what can be observed that 
the number of failed attempts oscillates between 
10 and 20 cases for each angle of incidence. Ad-
ditionally, the results are visualized in Figure 7, 
and after adding the linear to the results obtained 
it can be observed that there is no specific depen-
dence between angle of incidence and number 
of failures. Moreover, the coefficient of determi-
nation of the fitting function is calculated and is 
equal to R2 = 0.01143, what proves no correlation 
between number of failed attempts and angle of 
incidence. If the coefficient of determination is 
close to R2 = 1, then there is an increasing cor-
relation between two factors, while the value is 
close R2 = -1 there is a decreasing correlation. Af-
ter its determination it can be stated that there is 
no dependence between of the angle of incidence 
on the operation of the vision system, while the 
value of the light intensity is kept constant. In the 
next step of the research, the cross-correlations 
between two or more features influencing the 
vision system will be considered, such it is de-
scribed in the following research by Pratomo et 
al. [30]. In this case the number of cases can be 
studied exemplary with the Principal Component 
Analysis (PCA). 

CONCLUSIONS

As collaborative robots are one of the fast-
est groups of robots that are applied in industrial 
applications, recently they became the issue of 
various research [25,26]. The conducted research 
aimed to find the optimal lighting conditions for 

Table 5. Linear fitting function to the results obtain 
for number of vision systems failures and coefficient 
of determination

Linear fitting function

y = – 0.007619 x + 14.2

R2 = 0.01143

Fig. 5. Number of failures of vision system in the 
domain of variable angle of incidence. Green curved 
line corresponds to the cubic fitting to the results 
obtain of number of failures

Table 3. Cubic fitting function to the results obtain for 
number of vision systems failures

Cubic fitting function

y = -1.74e-6 x3 + 0.002282 x2 – 0.8397 x + 80.07

Table 4. Details for conducted experiement by 
different values of angle of incidence

Light 
intensity [lux]

Number of 
tests [–]

Angle of 
incidence [°]

Number of 
failures [–]

70 100

0 16

15 13

30 12

60 15
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the vision system, which is embedded in the grip-
per of the ABB YuMi collaborative robot. For the 
few levels of light intensity, the experiment was 
conducted with the element on which the QR 
code was printed. After the analysis of results ob-
tained, the range of light intensity for which the 
vision system operated smoothly was observed 

between 100-600[lux]. When the element was 
under or overexposed, numerous failed attempts 
occurred in the recognition of the QR code.  
In order to cross-check the vision system, the ad-
ditional test was conducted by the constant light 
intensity and various angles of incidence. The 
range of angle of incidence was between 0° to 
60°, and the attempt consisted of 100 counts. Re-
sults obtained in the second experiment showed 
that there is no correlation between the angle of 
incidence and the number of failed attempts, the 
value of the calculated coefficient of determina-
tion was close to 0, which means a very weak 
correlation between the two factors. This ob-
servation proved that the level of light intensity 
plays a crucial role in the proper operation of the 
vision system in the industrial robot. The future 
tests with the vision system in YuMi collabora-
tive will be referred to the variable light intensity 
in time during the assembly process. Then, the 
real-time light intensity measurements would be 
conducted, the analysis could be extended with 
the comparison of different types of element rec-
ognition, i.e. different colors, surface quality or 
shape of the element. 

b)

a)

Fig. 6. Experiment with different angle of incidence (a) 0°, (b) 30°

Fig. 7. Number of failures of vision system in the 
domain of variable angle of incidence. Green straight 
line corresponds to the linear fitting to the results 
obtain of number of failures
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